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Abstract

This paper describes a parallel implementation of
the direct simulation Monte Carlo (DSMC) method.
Runtime library support is used for scheduling and exe-
cution of communication between nodes, and domain
decomposition is performed dynamically to maintain a
good load balance. Performance tests are conducted
using the code to evaluate various remapping and
remapping-interval policies, and it is shown that a one-
dimensional chain-partitioning method works best for
the problems considered. The parallel code is then used
to simulate the Mach 20 nitrogen flow over a finite-
thickness flat plate. It is shown that the parallel algo-
rithm produces results which compare well with experi-
mental data. Moreover, it yields significantly faster

execution times than the scalar code, as well as very
good load-balance characteristics.

Nomenclature

Freestream Mach number

Re Reynolds number

Stagnation pressure, bars

Surface pressure, Pa

Surface heat flux, W/m2

Time required to compute 1 time step

Stagnation temperature, K

Surface temperature, K

System degradation function

Rotational relaxation number

Intr oduction

The direct simulation Monte Carlo (DSMC)
method of Bird1 has become the standard method for the
analysis of hypersonic rarefied flows. Since its incep-
tion, the method has been applied to more and more
complex configurations, including the Space Shuttle
orbiter geometry2 and the Upper Atmosphere Research
Satellite.3 Furthermore, many DSMC analyses carried
out today include physical phenomena such as thermal
and chemical nonequilibrium.4 The combination of
complicated geometries and complicated flow physics
leads to large processor-time and storage requirements,
even for low-density calculations. For near-continuum
DSMC applications, the resource requirements can ren-
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der a meaningful simulation infeasible on current scalar
architectures.

A new computational resource which may be
brought to bear on DSMC problems is found in the
advent of parallel computing. While parallel program-
ming is still in its formative stages, parallel architectures
show promise in being able to complete tasks in a frac-
tion of the time required by contemporary scalar
machines. This new architecture thus represents an
opportunity to simulate flows at higher densities, or to
perform many simulations in the time previously
required for one simulation.

A considerable amount of effort has already been
put into the parallelization of DSMC algorithms.5 One
of the aims of the present work is to utilize one such par-
allel implementation to analyze a problem of practical
interest. The problem considered is described below.

CNRS Experiment

Figure 1 shows the pertinent dimensions of a
finite-thickness flat plate with truncated leading edge
tested at zero angle of attack in the SR3 low-density
nitrogen tunnel at the Centre National de la Recherche
Scientific (CNRS), Meudon, France.6 The experimental
results for the surface heat-transfer rate were compared
to Navier-Stokes and DSMC results by the CNRS
researchers; the CFD results were shown to match the
test data quite well, while the DSMC results overpre-
dicted the heat flux across the length of the plate. Fur-
ther efforts to correct the discrepancy in the DSMC
results made little difference, as shown in the paper by
Hashet al.7 This further study included the consider-
ation of effects such as collision model, grid refinement,
and nonuniformities in the upstream test section. How-
ever, one possible physical phenomenon not considered
in any of these solutions was the possibility of a three-
dimensional relief effect, which could lower the heat
flux to the plate. Therefore, one motivation for pursuing
the problem is to obtain a solution for the complete
flowfield. To this end, the flat plate was modeled first
with the modified F3 code of Rault8 and then with a
modified version of the DSMC3 code of Bird.9

The results from these computations suggested
that, while no relief effect appeared to be present,
increases in grid resolution tended to increase the agree-
ment between the computed and experimental data.
Both of these simulations were conducted on scalar
machines; it was reasoned that solution on a parallel
architecture would allow a simulation with greater reso-
lution to be pursued with considerably less turnaround
time.

Flow Conditions and Flow Physics

Table 1 lists the flow conditions for the CNRS
experiment. Note that the stagnation temperature of
1100 K is quite low; therefore, vibrational excitation
and dissociation are not expected to take place, and the
only species considered was N2. The Variable Hard
Sphere (VHS) model of Bird1 was utilized with a vis-
cosity-temperature exponent of 0.75. Energy exchange
between translational and rotational modes was deter-
mined through use of the Larsen-Borgnakke method10

and a rotational relaxation number . The surface
of the plate was assumed to be diffusely reflective with
full thermal accommodation. It should also be noted that
the test conditions correspond to a freestream Knudsen
number based on plate length of about . Since
rarefied-flow conditions are typically assumed to prevail
above Knudsen numbers of around 0.01, these condi-
tions correspond to a near-continuum flow.

Note in Figure 1 that the plate is partitioned into
four equal sections. In the DSMC results to be discussed
later, only one of these portions is considered. This sim-
plification may be made because of the fact that the
plate possesses two planes of symmetry, and that the
experiment was carried out at zero angle of attack. Thus,
consideration of the entire plate is unnecessary.

One of the objectives of this work was to develop a
scalable parallel method while leaving the physics mod-
eled by the original scalar code intact. To this end, no
modifications have been made to the physical models
employed by the original code for the sake of parallel-
ization. Additionally, the possibilities explored in the
earlier work on this problem (effect of collision model,
upstream flow nonuniformity,etc.) have not been con-
sidered here, since the earlier studies showed that these
variations made little difference in the results.

Parallel Algorithm

The method of parallelization used here utilizes
runtime library support to carry out communication and
data structure manipulations associated with molecule
lists, as well as provide routines for remapping. This
library--the CHAOS library--was developed at the Uni-
versity of Maryland, and is based upon the PARTI
library developed at the Institute for Computer Applica-
tions in Science and Engineering (ICASE) at NASA
Langley Research Center.11,12 The PARTI library was
originally built for use with static irregular problems.
These are problems where the data access patterns are
known only at runtime, but the data access pattern is
invariant once it has been defined. The data access pat-
terns in irregular problems are determined throughindi-
rection arrays, which are arrays whose elements point
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to elements in another array, as shown in the FORTRAN
code fragment below.

      do 10 i=1,n

          sum=sum+x(icg(i))

 10   continue

The icg  array in the above is an example of an indirec-
tion array.

DSMC represents a dynamic (or adaptive) irregu-
lar problem: Data access patterns are known only at
runtime, and can change as execution progresses. The
data access patterns change because molecules move
from cell to cell during the simulation, and molecule
information is frequently referenced with respect to the
cell in which a molecule resides. CHAOS was devel-
oped with such problems in mind, and utilizes a series of
preprocessing steps in order to facilitate efficient com-
putation.

First of all, CHAOS determines how data arrays
are to be partitioned. This step involves the generation
of a translation table which maps elements of the data
arrays to their owner processors. This table is globally
accessible; in this application, the table is replicated on
each processor. The second step is the actual remapping
of the data; this remapping is carried out through (1)
generation of an optimized interprocessor communica-
tion schedule and (2) use of scatter-append type proce-
dures to move the data to the appropriate locations.
These entities are discussed below.

Since molecules may move from cells owned by
one processor to cells owned by another, it is necessary
to communicate molecule-based data between proces-
sors even if the problem partition does not change. Since
such communication is required every time step, com-
munication optimization is crucial for efficient parallel
computation in DSMC. Therefore, CHAOS utilizes
optimized communication schedules. This optimization
is characterized by communication vectorization. In this
process, an effort is made to send only a very few large
messages instead of many short messages, since long
messages are less expensive to communicate. Commu-
nication costs are further reduced through the use of
lightweight communication schedules. These light-
weight schedules are a further enhancement which can
be realized because of the data independence character-
istic of DSMC; these schedules are considerably
cheaper than standard CHAOS schedules because it is
not necessary to specify the placement order of cells
being transmitted to another processor.

The scatter-append operations are very useful in
DSMC because, once the movement phase is com-
pleted, DSMC cells can be operated on in any order

(unlike CFD, where knowledge of the cell order and an
orderly sweep through the domain are very important).
Thus, data need only be appended to existing data lists
for each processor, and costly reordering of the data is
unnecessary.

As discussed earlier, DSMC is a highly dynamic
method; that is, the molecules simulated by the code are
not uniformly distributed, and the distribution varies
considerably as the simulation progresses. To help
maintain a good load balance, CHAOS also supports
several methods for repartitioning the domain. The basic
premise of any load-balancing algorithm is to partition
the domain so that each processor must perform approx-
imately the same amount of work. However, a criterion
must be selected as the basis for measuring the amount
of work owned by each processor. Two possible candi-
dates are the number of molecules in each cell and the
compute time required for each cell; these two alterna-
tives will be examined later. In either case, several
options are available for decomposing the domain; three
possibilities investigated here are recursive coordinate
bisection (RCB),13 recursive inertial bisection (RIB),14

and one-dimensional chain partitioning.12

In the first two algorithms, the domain is recur-
sively halved (with each new portion of the domain pos-
sessing an equal amount of “work”) until there are as
many subdomains as processors. The difference
between RIB and RCB is that RIB chooses the partition-
ing direction as the direction with the minimum “iner-
tia.” In other words, if the data in the domain tend to be
clustered around an axis different from one of the coor-
dinate axes, RIB will find that axis and partition normal
to it. On the other hand, RCB simply chooses the coor-
dinate following the largest dimension of the domain
(typically thex axis). The third choice--chain partition-
ing--is a very inexpensive method that works well for
certain problems. Here, the domain is partitioned into
many contiguous strips, or chains, with each of these
chains containing about the same amount of work. The
chain-partitioning method implemented here seeks to
reduce the remapping cost even further by considering
only the cost of computation in determining the amount
of work owned by each processor; communication costs
are not considered. An additional advantage of the chain
partitioner over the two bisection methods is that it can
be used with any number of processors, whereas the
bisection methods require 2N processors. Figures 2, 3,
and 4 show problem domains partitioned using RCB,
RIB, and chain partitioning, respectively. When any of
these repartitioning methods are used, both cell-based
and molecule-based data must be remapped as well. The
same lightweight communication schedules and data-
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transfer procedures discussed earlier can be used to per-
form this remapping.

For dynamic problems such as DSMC, the work-
load distribution can change drastically during execu-
tion, leading to a high degree of load imbalance among
the processors in use. Thus, the partitioning methods
described above are reapplied at fixed or varying inter-
vals. It has been shown that, for many problems solved
using a load-balancing algorithm, remapping the
domain at fixed intervals can lead to poor performance.
Therefore, it is desirable to either determine the opti-
mum interval for remapping, or employ a monitoring
policy which actively decides when remapping is neces-
sary. The former choice is not practicable for most prob-
lems. Thus, in this study, a variable-interval remapping
policy is investigated as well; the method employed is
the Stop at Rise (SAR) policy described by Nicol and
Saltz.16 This remapping policy chooses to repartition the
domain based on the value of a system degradation
functionW, which is defined as follows:

(1)

In the above,n is the number of time steps since
the last remapping (which occurred in the step just
before step “1”),tmax is the maximum amount of time
required by any one processor during thejth time step
(and thus the amount of time required to complete the
jth time step),tavg is the average time required by a pro-
cessor to complete thejth time step, andC is the amount
of time required to complete the remapping operation.
This quantity is monitored during the computation, and
represents the average processor idle time per step
achieved by remapping immediately. Repartitioning is
performed after the first value ofn such that

--that is, when the first local mini-
mum is detected. The function  initially tends to
decrease asn increases, because the remapping costC is
amortized over an increasing number of time steps.
However, asn increases, the summation term in Equa-
tion (1) will eventually increase as well, indicating a
loss of workload balance and a need to remap. This
remapping method is advantageous in that no prior
knowledge of the problem is necessary for the determi-
nation of the remapping interval, and the remapping
interval can be expected to adapt to the dynamics of the
problem.

These procedures were implemented into the mod-
ified DSMC3 code of Bird and ported to the 72-node
Intel Paragon recently brought on line at NASA Langley
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Research Center. The results presented herein were
obtained using up to 64 nodes on this machine.

Results and Discussion

Parallel Performance Results

It was desired to evaluate the effect of different
partitioning methods on the performance of the parallel
algorithm. To this end, a simplified problem (zero-thick-
ness flat plate with a smaller domain and
grid), with the same freestream conditions as the CNRS
experiment, was solved using the parallel code set up in
a variety of configurations. The test case was also run on
a scalar machine, and excellent agreement was found
between the flowfield and surface results produced by
the two codes. Four suites of performance tests were
conducted. In the first, the three partitioning methods
described earlier were compared for a fixed remapping
interval of 20 timesteps. These results are shown in Fig-
ure 5. It may be seen that RCB offers the poorest perfor-
mance of the three methods, and that for this method the
execution time actually increases as we go from 32 to 64
nodes. Additionally, it is clear that the chain partitioner
yields the best performance of the three when applied to
this particular problem.

Figures 6 and 7 compare the possibilities available
for the remapping interval: no remapping (static parti-
tion), fixed-interval remapping, and SAR. The results in
Figure 6 are for recursive inertial bisection, and those in
Figure 7 were obtained using the chain partitioner. For
this test case, the static partition gives very good results,
particularly for large numbers of processors. As far as
the other two cases are concerned, we see that the fixed-
interval remapping outperforms SAR in most cases, but
that the two curves follow the same trends. The excep-
tion is the crossover in Figure 6; for 64 nodes and RIB,
SAR does outperform fixed-interval remapping. The
results in these two figures indicate that the test case is
simple enough that the cost ofany remapping whatso-
ever is greater than the load imbalance suffered through
retaining a static partition. Thus, it is apparent that the
best remapping policy is problem-dependent.

In Figure 8, we see the performance results
obtained for two different measures of workload--com-
pute time per cell and number of molecules per cell. For
this problem, we note that the two measures give very
similar behavior, and it is difficult to say which method
is better.

The performance results discussed here show that,
in general, the benefit realized from increasing the num-
ber of processors decreases as the number of processors
increases. Nevertheless, for the correct selection of par-
titioning and remapping methods, an appreciable

48 16 2××
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decrease in run time can still be realized by running on a
very large number of nodes. As a basis for comparison,
the scalar version of this simulation required 930 s to
run on a Sun SPARCstation 2 workstation.

CNRS Comparison Results

Figure 9 shows results for the heat-transfer rate
along the top of the finite-thickness CNRS plate using
the original, scalar version of the modified DSMC3 code
and a  grid. Also shown are the CNRS
DSMC results and the test data itself. Note that the cur-
rent results shown here follow about the same trends as
the previous DSMC results, although the agreement is
poor near the plate leading edge. Moreover, both sets of
computed results overpredict the heating rate, particu-
larly near the leading edge.

In order to obtain improved flowfield resolution
without a substantial computational penalty, the original
code was modified to sample the simulated particles on
a subcell level instead of at the cell level. Figure 10
shows the heat-flux results for this new method, with
four subcells per cell in they direction. We see that the
agreement between these results and the experimental
data is better than that between the test results and the
previous DSMC results; this improvement may be
traced to improved grid resolution. However, the dis-
crepancy between the experimental and computed
results is still quite large at the leading edge.

Prior to conducting a grid resolution study using
the parallel code, it was desired to determine which code
setup would be best for the CNRS problem. Therefore,
an abbreviated set of performance-evaluation runs was
conducted using a moderately large ( ) grid
and about 860,000 molecules. The results of these tests
are shown in Table 2; in each case, the code was run
1000 timesteps on 32 nodes. Note that the combination
of chain partitioning and SAR yielded a slightly higher
execution time than the combination of chain partition-
ing and fixed-interval remapping; however, the degree
of load imbalance is slightly lower for the chain/SAR
case. (The load imbalance is defined as the ratio of the
compute time required for the bottleneck processor to
the average compute time for all the nodes.) Further-
more, it is clear that the third and fourth setups are poor
candidates for use in higher-resolution studies, since
both require considerably larger amounts of CPU time
and exhibit large degrees of load imbalance. Based on
these results, the code was configured to utilize the
chain partitioner in conjunction with the SAR remap-
ping policy, since SAR appeared to run only slightly
slower for the case considered and the fixed remapping
interval used here (once every 50 timesteps) may not be
the best remapping interval for all the cases considered.

52 24 26××

52 60 26××

In order to find a grid-independent solution, the
parallel code was next used to obtain results for succes-
sively finer grids; the results for the final grid are shown
in Figure 11. This case utilized a  grid and
approximately 1.4 million simulated molecules. It may
be seen that the agreement between the DSMC results
and experimental data is now much better, although the
agreement is still not very good at the leading edge. We
may also compare the surface pressure results, as shown
in Figure 12. It is interesting to note that, while the
DSMC heat-flux results compare well to the experimen-
tal data, the same cannot be said for the surface-pressure
results. In fact, it may be seen that the computed results
do not even follow the same trend as the experimental
results.

It should be reiterated that the problem considered
here required very simple flow physics; moreover, the
geometry itself was quite simple. One may ask whether
the present method could be readily expanded to more
comprehensive flow physics and more complex surface
geometries. As far as the latter is concerned, inclusion
of other physical phenomena should be relatively
straightforward. In DSMC, any physical process such as
dissociation or ionization requires a collision between
simulated particles, and the collision coding used herein
is virtually unchanged from the scalar algorithm. The
main difference would be that new arrays would be nec-
essary to keep track of the additional particle informa-
tion (such as vibrational energy state), and these arrays
would have to be distributed in the same fashion as
other data arrays. In order to incorporate more general
geometries into the code capability, a nonuniform grid
would most likely be necessary. Such a grid would nec-
essarily complicate the movement and indexing phases
of the method, and these added difficulties would trans-
late into further difficulties with respect to paralleliza-
tion. However, these problems can most likely be
overcome, and will be part of the focus of further work.

An additional note regarding use of the parallel
code on more complex configurations is in order. As
mentioned before, the best choice of partitioning strat-
egy is problem-dependent, and methods which worked
well for the simple geometries considered herein may
produce poor performance for other geometries. For
instance, the chain partitioner discussed herein was
quite useful for both the test case and the CNRS case.
However, it may not be as useful in flows where a large
percentage of the particles move in a direction other
than the freestream flow direction, such as blunt-body
wake flows. In any case, one should evaluate the avail-
able domain-decomposition options for a new problem
prior to attempting a full-blown simulation of the prob-
lem.

52 96 26××
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Conclusions
The parallel implementation of the DSMC method

presented here was successful in producing results
which compared well with scalar DSMC results for the
simple test case. Through use of the parallel code, it was
possible to increase grid resolution and still obtain solu-
tions for the CNRS comparison case in a reasonable
amount of time. The grid-independent results obtained
using the parallel code showed good agreement with
experimental heat-transfer data; however, the computed
pressure distribution still compared very poorly with the
measured distribution.

Performance results for the test case and the CNRS
case indicate that the best partitioning and remapping
policies are problem dependent; some of the load-bal-
ancing strategies which produced acceptable perfor-
mance for the test case worked poorly for the CNRS
case. Thus, it is important to know something about the
flow under consideration before deciding what set of
parallel-execution parameters to employ.
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Tables

Table 1. CNRS test conditions.

Figures

Figure 1. CNRS flat-plate geometry.
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Table 2. CNRS case performance results.

Partition/
Remap inter-

val

Execution
time

(seconds)

Degree of
load imbal-

ance

Chain/SAR 1217.3 1.019

Chain/Fixed 1198.8 1.020

RIB/SAR 1381.4 1.065

Static/-- 2015.4 1.775

M∞

T∞

p0

T0

Tw

Dimensions in millimeters

5.0

100 100

Front Side

Top

Figure 2. Domain decomposition with RCB.

Figure 3. Domain decomposition with RIB.

Figure 4. Domain decomposition with the chain par-
titioner.
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Figure 5. Performance results: Effect of partition
method.

Figure 6. Performance results: Effect of remapping
method (RIB).

Figure 7. Performance results: Effect of remapping
method (chain partitioner).
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Figure 8. Performance results: Effect of workload
measure.

Figure 9. Heat flux results at  for the scalar
code (  grid,1 subcell per cell).

Figure 10. Heat flux results at  for the scalar
code (  grid, 4 subcells per cell in they

direction, flow sampled on a per-subcell basis).
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Figure 11. Heat flux results at  for the parallel
code (  grid, 1 subcell per cell).

Figure 12. Surface-pressure results at  for the
parallel code (  grid, 1 subcell per cell).
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